Peripheral Blood Progenitor Cell Mobilization for Autologous and Allogeneic Hematopoietic Cell Transplantation: Guidelines from the American Society for Blood and Marrow Transplantation

Abstract
Peripheral blood progenitor cell mobilization practices vary significantly among institutions. Effective mobilization regimens include growth factor alone, chemotherapy and growth factor combined, and, more recently, incorporation of plerixafor with either approach. Many institutions have developed algorithms to improve stem cell mobilization success rates and cost-effectiveness. However, an optimal stem cell mobilization regimen has not been defined. Practical guidelines are needed to address important clinical questions, including which growth factor is optimal, what chemotherapy and dose is most effective, and when to initiate leukapheresis. We present recommendations, based on a comprehensive review of the literature, from the American Society of Blood and Marrow Transplantation.

Introduction
Hematopoietic cell transplantation (HCT) has become an increasingly important therapy for patients with hematologic malignancies. In the past several decades, the utilization of both autologous and allogeneic HCTs for adult and pediatric populations has risen significantly. Peripheral blood progenitor cell (PBPC) mobilization and collection is a critical part of the HCT procedure. Mobilization and collection practices vary widely. PBPC mobilization and collection processes require involvement and coordination of various departments, including the clinical transplant program, therapeutic apheresis, and flow cytometry, and cell processing laboratories. Important considerations regarding the choice of mobilization regimen also include patient safety, efficacy and reliability of the regimen, physician familiarity of the regimen, patient convenience, and cost-effectiveness. These variables have led to tremendous heterogeneity in practices. Institutions have adapted strategies according to their preference and resource availability. No standard approach has been established, and an optimal regimen has not been defined.

Financial disclosure: See Acknowledgments on page 1270.
* Correspondence and reprint requests: Hien K. Duong, MD, Blood and Marrow Transplant Program, Cleveland Clinic Foundation, 9500 Euclid Avenue, Desk R25, Cleveland, OH 44195.
E-mail address: duongh@ccf.org (H.K. Duong).
Recently, consensus guidelines addressing autologous stem cell mobilization strategies have been published [1]. Recognizing the need for a more standardized approach and best practice recommendations for both autologous and allogeneic PBPC mobilization, the Practice Guidelines Committee of the American Society for Blood and Marrow Transplantation assembled a working group to address important questions in this evolving field, the answers to which provide clinical guidelines based on the best available evidence.

METHODS

The working group included experts in clinical transplantation and apheresis. A list of important questions relevant to PBPC mobilization and collection was generated. A comprehensive and critical review of relevant published literature was then performed to address those questions. We screened for publications in the PubMed database by including the search terms “stem cell mobilization,” “growth factor stem cell mobilization,” “plerixafor stem cell mobilization,” “chemotherapy stem cell mobilization,” “pediatric stem cell mobilization,” “mobilization algorithm,” and other search terms pertinent to the questions being addressed.

Both retrospective and prospective studies were included. Meeting abstracts, data from non–peer-reviewed journals, review articles, and studies with incomplete data were excluded. Studies based on small sample size (<25 patients) were included when they constituted the only available data or were otherwise of significant impact. Much of these data are old, some are of poor quality, and only few are randomized, prospective studies.

One hundred eleven articles most pertinent to the proposed questions were identified. These articles were then graded according to level of evidence and strength of recommendation [2]. Technical aspects of stem cell mobilization and collection will be addressed in future guidelines to be published by the American Association of Blood Banks.

GUIDELINES

A summary of recommendations in the format of frequently asked questions is also provided in Tables 1, 2, and 3.

Allogeneic Progenitor Cell Transplant

Question 1: What is the best myeloid growth factor and dose schedule for mobilization for adult donors?

Single-agent filgrastim (granulocyte colony-stimulating factor [G-CSF]) is the preferred growth factor for mobilizing peripheral blood progenitor cells (PBPCs) in healthy adult donors. The recommended dose is 10 μg/kg body weight/day, either as a single or split dose. Several studies have demonstrated the superiority of G-CSF as a single agent compared with granulocyte macrophage (GM)-CSF (sargramostim) or combination growth factor support [3-15]. Equivalent split dosing (5 μg/kg twice daily) or higher split dosing (12 μg/kg twice daily) has been reported to result in higher collection yields with shorter collection times; however, the toxicities of bone pain, fatigue, and headaches were more frequent, and costs were higher [7-10]. As a result, most centers do not use higher doses. Similarly, when G-CSF is compared with combination growth factor support, although a higher number of cells may be collected, there are increased toxicities and no overall benefit [11-13]. A prospective randomized study recently compared G-CSF alone to G-CSF plus GM-CSF and reported differential graft content without significant differences in survival [13]; the potential impact of graft composition differences on other outcomes will need to be explored.

Filgrastim (nonglycosylated G-CSF), which is most commonly used in the United States, has been compared with lenograstim (glycosylated G-CSF), which is widely used in Europe, with similar reported outcomes [14,15]. Although the longer acting pegylated G-CSF (pegfilgrastim) is effective, little data support its use given the possibly increased toxicities and higher costs [16,17].

Plerixafor binds to and blocks the chemokine receptor type 4 on stem cells that are thereby unanchored and able to enter the bloodstream. Results of mobilization with single-agent plerixafor have been reported, but the current data, at best, indicate no benefit over G-CSF alone. An ongoing Center for International Blood and Marrow Transplant Research study is enrolling and evaluating single-agent plerixafor in donors [18].

For adult volunteer unrelated donors, the National Marrow Donor Program (NMDP) performs PBSC collections under an NMDP-sponsored research protocol, operated under an Investigational New Drug application with the US Food and Drug Administration. Under this protocol, G-CSF is administered for 4 or 5 consecutive days at a daily dose of 10 μg/kg. The NMDP also recommends that PBSC collections do not exceed a maximum blood volume of 24 liters, collected over 1 or 2 consecutive days, unless approved in advance by the NMDP medical director.

Question 2: Is PBPC mobilization with growth factors safe for pediatric donors, and, if so, what is the best myeloid growth factor and dose schedule?

PBPC collection is safe in healthy pediatric donors, and target CD34+ cell yields can be achieved.

The Pediatric Blood and Marrow Transplant Consortium conducted a retrospective analysis on the safety and efficacy of PBSC donation by 201 pediatric sibling donors from 22 institutions. The results showed that target CD34+ cell yields were successfully achieved. Younger age, more days of apheresis, and male gender were predictive of higher cell yields. Growth factor–induced pain was reported in fewer than 15% of donors. Most donors required central venous catheter placement, but approximately one third of children between ages 7 and 12 years could be collected via peripheral access. Children weighing less than 20 kg were subjected to a single blood product exposure for priming of the apheresis machine. Complications were generally limited and mild [19].

There are limited data comparing mobilization regimens in children. However, the most common approach uses G-CSF at 10 μg/kg/day as a single daily dose or in 2 divided doses [18-23].

Question 3: What are the target CD34+ cell doses for collection and infusion for adult patients?

In allogeneic HCT, the importance of cell dose on transplantation outcomes has been demonstrated by multiple studies. Although the absolute lower threshold to guarantee engraftment is not known, the generally accepted minimal cell dose is 2 × 10^6 CD34+ cells/kg. Although some studies have demonstrated that successful engraftment has occurred at doses as low as 0.75 × 10^6 CD34+ cells/kg, neutrophil and, particularly, platelet engraftment were delayed [24].

Higher doses result in faster engraftment and reduced rates of infection and nonrelapse mortality. However, beyond a certain threshold, there may be no added benefit and a possible increased risk of chronic graft-versus-host disease (GVHD) [24-32]. A target CD34+ cell dose between 4 and 5 × 10^6 CD34+ cells/kg seems most reasonable based on available data.

In 3 large studies of matched sibling donor transplantation, higher cell doses were associated with faster
Table 1
Allogeneic Donors

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Grade of Recommendation</th>
<th>References</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the best myeloid growth factor and dose schedule for mobilization for adult patients?</td>
<td>Filgrastim (Neupogen®, G-CSF) 10 μg/kg/day, as a single dose, or 5 μg/kg twice daily, with leukapheresis beginning on the fifth day</td>
<td>A</td>
<td>3-10</td>
</tr>
<tr>
<td>Sargramostim (Leukine®, GM-CSF)</td>
<td>B</td>
<td>11-13</td>
<td>The use of GM-CSF as single agent is not advised because CD34<sup>+</sup> cell yields were lower compared with G-CSF and donors required more leukapheresis for adequate collection.</td>
</tr>
<tr>
<td>Lenograstim (Granocyte®)</td>
<td>B</td>
<td>14-15</td>
<td>No statistical difference in major outcomes between single-agent filgrastim and lenograstim. Lenograstim not available in the US.</td>
</tr>
<tr>
<td>Pegfilgrastim (Neulasta®) 6-12 mg/d as a single dose Plerixafor (Mozobil®) 240 μg/kg as single agent</td>
<td>B</td>
<td>16-17</td>
<td>There are few reports of pegfilgrastim as a single agent but not widely used.</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>18</td>
<td>There is currently only recent and therefore insufficient evidence to more strongly support the use of plerixafor for this indication.</td>
</tr>
<tr>
<td>Is stem cell mobilization safe and effective for pediatric patients? What is the best myeloid growth factor and dose schedule for pediatric patients?</td>
<td>G-CSF 10 μg/kg/day either as a single daily dose, with leukapheresis beginning on the fifth day</td>
<td>C</td>
<td>19-23</td>
</tr>
<tr>
<td>What are the target CD34<sup>+</sup> doses for collection and infusion for adult patients?</td>
<td>For infusion: Optimal: ≥4 × 10<sup>6</sup> CD34<sup>+</sup> cells/kg Maximum: 8 × 10<sup>6</sup> CD34<sup>+</sup> cells/kg For collection: Minimum: 2 × 10<sup>6</sup> CD34<sup>+</sup> cells/kg</td>
<td>C</td>
<td>24-32</td>
</tr>
<tr>
<td>What are the target CD34<sup>+</sup> cells doses for collection and infusion for pediatric patients?</td>
<td>For infusion: Minimum: 2.4 × 10<sup>6</sup> CD34<sup>+</sup> cells/kg For collection: Minimum: 2 × 10<sup>6</sup> CD34<sup>+</sup> cells/kg</td>
<td>C</td>
<td>33-36</td>
</tr>
<tr>
<td>What type of venous access is recommended?</td>
<td>Antecubital venous access is preferred. If peripheral access is not possible, central venous access may be placed by image guidance. For pediatric patients: Most small children require central venous catheter placement under general anaesthesia. However, children aged between 7 and 12 years should still be assessed for possible use of peripheral vein access.</td>
<td>C</td>
<td>37-41</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Strength of Recommendation</td>
<td>References</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>What is the optimal myeloid growth factor and dose schedule for initial mobilization for adult patients?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For growth factor only stem cell mobilization:</td>
<td>A</td>
<td>42-46</td>
<td>This dose is most commonly used.</td>
</tr>
<tr>
<td>Filgrastim 10 μg/kg/day, as a single dose, with leukapheresis beginning on the fifth day</td>
<td>C</td>
<td>47</td>
<td>Although effective, not adopted by many centers.</td>
</tr>
<tr>
<td>Pegfilgrastim 12 mg, as a single dose, with leukapheresis beginning when the peripheral blood stem cell count is adequate (as defined below)</td>
<td>A</td>
<td>48-50</td>
<td>Because plerixafor can be prohibitively expensive, many centers limit its use to those who are at highest risk for mobilization failure.</td>
</tr>
<tr>
<td>Plerixafor and filgrastim: filgrastim 10 μg/kg/d as a single dose with plerixafor 240 μg/kg in the afternoon or evening before beginning leukapheresis (on day 5)</td>
<td>C</td>
<td>58, 59</td>
<td>Few studies are available that compare different dose regimens.</td>
</tr>
<tr>
<td>For chemotherapy combined with growth factor for stem cell mobilization:</td>
<td>C</td>
<td>60</td>
<td>Only case reports are available.</td>
</tr>
<tr>
<td>Filgrastim 5-10 μg/kg/day, as a single dose, beginning at least 24 h after completion of chemotherapy, and then leukapheresis beginning when the peripheral blood stem cell count or WBC count is adequate</td>
<td>A</td>
<td>51, 54-57</td>
<td>Although both are reasonable options, filgrastim is much more commonly used than pegfilgrastim.</td>
</tr>
<tr>
<td>Pegfilgrastim 6-12 mg/d as a single dose given at least 24 h after completion of chemotherapy and leukapheresis beginning when the peripheral blood stem cell count is adequate</td>
<td>C</td>
<td>61-63</td>
<td>Generally can mobilize with any type of chemotherapy that patients may currently be receiving for treatment of their disease.</td>
</tr>
<tr>
<td>Disease-specific chemotherapy (IEV, ESHAP, ICE)</td>
<td>C</td>
<td>61-63</td>
<td>Generally accepted minimum is 2 × 10^6 CD34^+ cells/kg. For patients with multiple myeloma, a target CD34^+ cell dose of greater than 4 × 10^6 cells/kg is generally accepted (for second transplant).</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>C</td>
<td>55</td>
<td>An absolute lower threshold has not been determined, but generally accepted minimum is 2 × 10^6 CD34^+ cells/kg. For patients with multiple myeloma, a target CD34^+ cell dose of greater than 4 × 10^6 cells/kg is generally accepted (for second transplant).</td>
</tr>
<tr>
<td>Etoposide</td>
<td>C</td>
<td>56, 57</td>
<td>Greater cell yields mobilization with G-CSF alone and able to collect in fewer apheresis days, but increased risk of hospitalization for neutropenic fever. Higher doses of cyclophosphamide have been used effectively but with more side effects and significantly increased hospitalizations for neutropenic fever.</td>
</tr>
<tr>
<td>What is the optimal myeloid growth factor and dose schedule for initial mobilization for pediatric patients?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For growth factor only stem cell mobilization:</td>
<td>C</td>
<td>58, 59</td>
<td>Generally accepted minimum is 2 × 10^6 CD34^+ cells/kg. For patients with multiple myeloma, a target CD34^+ cell dose of greater than 4 × 10^6 cells/kg is generally accepted (for second transplant).</td>
</tr>
<tr>
<td>Filgrastim 10 μg/kg/day, as a single dose, with leukapheresis beginning on the fifth day</td>
<td>C</td>
<td>60</td>
<td>Few studies are available that compare different dose regimens.</td>
</tr>
<tr>
<td>Plerixafor and filgrastim</td>
<td>C</td>
<td>61-63</td>
<td>Generally can mobilize with any type of chemotherapy that patients may currently be receiving for treatment of their disease.</td>
</tr>
<tr>
<td>For chemotherapy combined with growth factor for stem cell mobilization:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filgrastim 5-10 μg/kg/day, as a single dose, beginning at least 24 h after completion of chemotherapy, and then leukapheresis initiated when peripheral blood stem cell count or WBC count adequate or Pegfilgrastim 100 μg/kg, as a single dose, at least 24 h after completion of chemotherapy with leukapheresis beginning when the peripheral blood stem cell count is adequate</td>
<td>C</td>
<td>61-63</td>
<td>An absolute lower threshold has not been determined, but generally accepted minimum is 2 × 10^6 CD34^+ cells/kg. For patients with multiple myeloma, a target CD34^+ cell dose of greater than 4 × 10^6 cells/kg is generally accepted (for second transplant).</td>
</tr>
<tr>
<td>Disease specific chemotherapy</td>
<td>C</td>
<td>61-63</td>
<td>Greater than 8 × 10^6 CD34^+ cells/kg is better, but a direct comparison cannot be made.</td>
</tr>
<tr>
<td>What type of chemotherapy and dose is recommended for chemomobilization in adult patients?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease-specific chemotherapy (IEV, ESHAP, ICE)</td>
<td>C</td>
<td>61-63</td>
<td>Generally can mobilize with any type of chemotherapy that patients may currently be receiving for treatment of their disease.</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>C</td>
<td>55</td>
<td>An absolute lower threshold has not been determined, but generally accepted minimum is 2 × 10^6 CD34^+ cells/kg. For patients with multiple myeloma, a target CD34^+ cell dose of greater than 4 × 10^6 cells/kg is generally accepted (for second transplant).</td>
</tr>
<tr>
<td>Etoposide</td>
<td>C</td>
<td>56, 57</td>
<td>Greater cell yields mobilization with G-CSF alone and able to collect in fewer apheresis days, but increased risk of hospitalization for neutropenic fever. Higher doses of cyclophosphamide have been used effectively but with more side effects and significantly increased hospitalizations for neutropenic fever.</td>
</tr>
<tr>
<td>What are the target goals for collection from adult and pediatric patients?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum: 2 × 10^6 CD34^+ cells/kg Optimal: 5 × 10^6 CD34^+ cells/kg</td>
<td>B</td>
<td>64, 65</td>
<td>Generally can mobilize with any type of chemotherapy that patients may currently be receiving for treatment of their disease.</td>
</tr>
<tr>
<td>Higher number of cells has been associated with improved outcomes</td>
<td>C</td>
<td>66-69</td>
<td>An absolute lower threshold has not been determined, but generally accepted minimum is 2 × 10^6 CD34^+ cells/kg. For patients with multiple myeloma, a target CD34^+ cell dose of greater than 4 × 10^6 cells/kg is generally accepted (for second transplant).</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 2 (continued)

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Strength of Recommendation</th>
<th>References</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>For growth factors alone:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For growth factors and chemotherapy:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For growth factors and plerixafor:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For growth factors alone:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For growth factors and chemotherapy:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For growth factors and plerixafor:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recommendation Strength of Recommendations

- **C**: Consensus
- **A**: Agreement
- **P**: Preference

References

2. CD34+ cell: CD34+ cell.
3. WBC: White blood cell.
4. GVHD: Graft-versus-host disease.
5. NMDP: National Marrow Donor Program.

When should you begin monitoring peripheral CD34+ counts?

When should you initiate leukapheresis?

When should you begin monitoring peripheral CD34+ counts?

When should you initiate leukapheresis?

Question 4: What are the target CD34+ cell doses for collection and infusion for pediatric patients?

Pediatric-specific data on cell dose optimization is lacking, and clinical practice has mainly been extrapolated from adult data. In the few studies available, higher CD34+ cell doses have been associated with faster engraftment but no impact on overall survival or the risk for developing GVHD [33-36].

Question 5: What type of venous access is recommended?

In several large retrospective reports of adult donor populations, peripheral venous access was adequate for stem cell collection in most patients. However, anywhere from .6% to 20% of donors require central line placement. Line placement was accomplished safely and effectively by interventional radiology [37-41].

Pediatric donors generally require central venous catheter placement. However, in a report from the Pediatric Blood and Marrow Transplant Consortium of 218 collections, 33% of donors between ages 7 and 12 years could be collected with peripheral access. For this reason, younger donors should be carefully evaluated for this possibility. Potential complications from catheter placement using general anesthesia or conscious sedation appear to be limited and mild [19,20].

Autologous Progenitor Cell Transplant

Question 1: What is the optimal myeloid growth factor and dose schedule for initial mobilization for adult patients?

If using growth factors alone, the standard is G-CSF. A daily dose of 10 μg/kg/day, as a single subcutaneous injection, is most commonly used, with leukapheresis beginning on the fifth day [42-44]. No advantage has been shown by split dosing G-CSF [45-46]. There is emerging data on the efficacy of 12 mg pegfilgrastim as a single subcutaneous dose...
<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Strength of Recommendation</th>
<th>References</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients at high risk of stem cell mobilization failure or for remobilization attempt</td>
<td>High-risk patients: Upfront use or addition of plerixafor or chemotherapy mobilization during initial mobilization Large-volume leukapheresis For those who have failed initial mobilization attempt: Plerixafor + growth factors Chemotherapy + growth factors</td>
<td>C</td>
<td>81-88 Many centers have developed algorithms based on risk for stem cell mobilization failure. Algorithms need to be based on institutional resources. A rest period of 2-4 wk is recommended before remobilization attempt. Subsequent remobilization can be successful with either addition of plerixafor or chemotherapy plus growth factor. Success rates are much higher with plerixafor plus growth factors. PBSC harvesting from low-weight patients is safe and effective. Priming of the machine compensates for extracorporeal volume and mitigates hemodynamic complications.</td>
</tr>
<tr>
<td>Pediatric patients with low weight</td>
<td>Patients below 15 kg are generally transfused to achieve hemoglobin > 12 g/dL and platelet count > 40 \times 10^9/L Priming of the apheresis machine with either RBCs and/or albumin is important for patients who weigh < 20 kg Large-volume leukapheresis (>3 times total blood volume) can be performed in patients with low birth weight</td>
<td>C</td>
<td>98,99 Priming of the machine compensates for extracorporeal volume and mitigates hemodynamic complications.</td>
</tr>
<tr>
<td>Obese patients</td>
<td>Single daily dosing G-CSF results in improved collection Increased BMI does not impair ability to collect adequately with plerixafor and G-CSF</td>
<td>C</td>
<td>101 Further studies are needed before suggesting a maximum dose of growth factor.</td>
</tr>
<tr>
<td>Should dosing be according to ideal or actual body weight?</td>
<td>Not yet enough data to recommend one approach over the other</td>
<td>C</td>
<td>28, 103 Further studies are warranted; however, if necessary to proceed with transplant, basing cell dose on either may be acceptable.</td>
</tr>
<tr>
<td>How to address thrombocytopenia?</td>
<td>For allogeneic stem cell donors: Maximum of 2 d of collection and possible transfusion for postapheresis platelet count > 75 \times 10^9/L For autologous stem cell transplant: Transfuse for preapheresis platelet count below 30 \times 10^9/L to prevent bleeding complications.</td>
<td>C</td>
<td>37 Very little data for recommendations</td>
</tr>
<tr>
<td>Is there a threshold for leukocytosis for which growth factors should be held?</td>
<td>No recommendation, but general practice for many centers is to withhold G-CSF when WBC > 100 \times 10^9/L and to hold plerixafor when WBC > 75 \times 10^9/L</td>
<td>C</td>
<td>37, 105-109 Theoretical concern is for splenic rupture, but very few data support the recommendations. In case reports where splenic rupture did occur, patients had WBC > 70 \times 10^9/L. However, no study has correlated WBC with risk for splenic rupture. Despite that, G-CSF and plerixafor are typically held at these thresholds.</td>
</tr>
<tr>
<td>Are G-CSF biosimilars recommended for use in PBPC mobilization?</td>
<td>Currently, there are insufficient data for recommending the use of G-CSF biosimilars for PBPC mobilization.</td>
<td>C</td>
<td>112-114</td>
</tr>
</tbody>
</table>

IEV indicates ifosfamide, epirubicin, etoposide; ESHAP, etoposide, methylprednisolone, cytarabine, cisplatin; ICE, ifosfamide, carboplatin, etoposide.
Question 2: What type of chemotherapy and dose are recommended for chemomobilization in adult patients?
Chemotherapy-induced mobilization is generally successful during WBC recovery after disease-specific chemotherapy [51-54]. In the absence of specific protocol-driven chemotherapy, cyclophosphamide or etoposide are commonly used for mobilization and result in higher collection yields with fewer days of apheresis than mobilization with growth factor alone. Current data do not support the concern that mobilization regimens that include etoposide promote secondary malignancies [57]. However, these benefits occur at the expense of increased hospitalizations for neutropenic fever, which occur in a substantial portion of patients [55-57].

Question 3: What is the optimal myeloid growth factor and dose schedule for initial mobilization in pediatric patients?
For mobilization with growth factor alone, the most commonly used regimen is daily G-CSF (10 μg/kg/day) with leukapheresis beginning on the fifth day of G-CSF. There is a paucity of data in children regarding dose and scheduling of growth factor alone [58,59]. Sevilla et al. [59] reported that G-CSF 12 μg/kg given twice daily could result in successful 1-day collections. However, side effects appeared to be more frequent than when lower doses were used. More recently, case reports have indicated successful stem cell collections using plerixafor and filgrastim, but existing data are insufficient to provide specific recommendations [60]. For chemotherapy plus growth factor mobilization, both filgrastim and pegfilgrastim have been studied. Although reports indicate similar efficacy and side effect profiles for both, filgrastim is generally used [61-63].

Question 4: What type of chemotherapy and dose are recommended for chemomobilization in pediatric patients?
For children undergoing autologous PBPC collection, mobilization is generally achieved during the marrow recovery phase after disease-specific chemotherapy protocols [62,63].

Question 5: What are the target goals for collection for adult and pediatric patients?
Studies have not demonstrated an absolute threshold cell dose below which hematopoietic recovery will not occur. However, a dose of \(2 \times 10^6\) CD34+ cells/kg for a single transplant has generally been accepted as a safe minimum.

Lower doses have been used, but at the risk of delayed neutrophil and platelet engraftment. Several studies have demonstrated that the optimal number may be greater than \(5 \times 10^6\) CD34+ cells/kg [64,65]. Higher cell numbers from so-called supermobilizers have been associated with faster hematopoietic recovery, more robust long-term platelet recovery, and improved overall survival [66-69]. In these studies, CD34+ cell doses exceeding \(8 \times 10^6\) CD34+ cells/kg appeared to be associated with greater benefit. However, these studies are retrospective and have potential bias. Studies are underway to address the question of whether it is the ability to mobilize a higher number of stem cells or the infused CD34 cell dose that is most important.

Question 6: When should you begin monitoring peripheral blood CD34+ cell counts?
Mobilization with G-CSF alone causes pbCD34+ cell counts to peak in the blood between the fourth and sixth days of therapy. For this reason, pbCD34+ cell monitoring should begin on either day 4 or 5 [5,70].
For patients mobilized with chemotherapy and growth factor, pbCD34+ counts generally begin 8 to 10 days after chemotherapy administration, when CD34+ cell counts are expected to peak [51-57,71,72]. Peak timing varies according to the specific chemotherapy regimen used and to patient-specific factors. For patients mobilized with plerixafor plus G-CSF in phase III studies, pbCD34+ cell counts were checked on days 4 and 5 of G-CSF administration (see Table 2) [48,49].

Question 7: When should leukapheresis be initiated?
Leukapheresis is most commonly initiated on day 5 when mobilization is achieved with G-CSF alone or G-CSF plus plerixafor [5,43-45,70]. When mobilization is achieved with chemotherapy, the start of leukapheresis is commonly determined by a threshold pbCD34+ cell count. There is no consensus on the optimal threshold, and institutional practice has varied from a minimal pbCD34+ count of 5 to 20/μL. One retrospective study of 95 patients found that a minimal pbCD34+ cell count of 5 cells/μL was adequate to meet a specified collection goal; however, that goal of .75 × 10^6 or 1.25 × 10^6 CD34+ cells/kg is considered to be low [70]. Another study of 48 patients suggested that a pbCD34+ cell count of at least 15 cells/μL was adequate when the collection goal was only 1.5 × 10^6 CD34+ cells/kg [71]. A more common target collection goal is at least 2 × 10^6 CD34+ cells/kg, and Elliot et al. [72] reported that more than 90% of 39 study patients achieved this goal when the threshold pbCD34+ cell count for starting leukapheresis exceeded 20 cells/μL.

Considerations for Special Populations, Comorbidities, and Other Topics
Question 1: What are possible ways to identify and address patients at high risk for stem cell mobilization failure?
What is the preferred agent for remobilization attempt?
Gertz et al. [73] reported on 1775 patients who were mobilized over a 7-year period. Patients were classified according to CD34+ cell yield: optimal collection (≥5 × 10^6 CD34+ cells/kg), low collection (≥2 to <5 × 10^6 CD34+ cells/kg), poor collection (<2 × 10^6 CD34+ cells/kg), and failed collection (apheresis not attempted because of low peripheral pbCD34+ cell count). Less than optimal collections were observed for 47% of patients, among whom 37% proceeded to transplant and the other 63% went on to further mobilization attempts. With subsequent attempts, there was increased use of growth factor support, antibiotic use, and transfusions,
emphasizing the extensive resource utilization associated with stem cell mobilization failures [73].

Multiple studies have analyzed poor mobilizers and have identified age greater than 60 years, multiple chemotherapy regimens, prior exposure to alkylation therapy or prior radiation, prior treatment with lenalidomide, and platelet count below 100 × 10^9/L [65,73-76]. Once mobilization has begun, other factors include low pbCD34+ cell count and poor collection on day 1 [77,78]. Therefore, many programs have developed algorithms to identify high-risk populations and to initiate rescue therapy during the first mobilization attempt to increase the likelihood of success [77-87]. The practice of escalating G-CSF doses to 20 to 30 μg/kg/day, when patients are not ready for collection 12 or 13 days after chemotherapy plus G-CSF at 10 μg/kg/day, is expensive and generally unsubstantiated. Similarly, data are insufficient in this scenario to support a day 12 or 13 rescue dose of plerixafor [88,89]. These risk-adapted strategies have not yet been validated, and further studies are needed.

Another strategy that has improved cell collection yield is large-volume leukapheresis [90-94]. For patients who fail an initial mobilization attempt, a rest period of 2 to 4 weeks is generally recommended before a subsequent attempt. Growth factors alone are generally not successful. Even combination growth factor support results in failure rates in excess of 80%. Chemotherapy with growth factor support also results in higher than desired failure rates and with more toxicities [95]. Plerixafor plus G-CSF (without chemotherapy) results in the highest success when used in the standard manner and is the preferred approach [96,97].

Question 2: How do you address pediatric patients with low weight?

One of the main concerns regarding pediatric patients with low body weight is the associated low blood volume. A low extracorporeal volume is necessary to mitigate hemodynamic complications. Patients of low weight should have hemoglobin of at least 12 g/dL or should be transfused with RBCs to reach this level [98]. Similarly, when severe thrombocytopenia is present, platelet transfusion to above 40 × 10^9/L is recommended to prevent bleeding complications. In children who weigh less than 20 kg, the apheresis machine should be primed with RBCs and/or human albumin to lower the extracorporeal volume [19,99].

Question 3: Are there special considerations for obese patients?

There are little data to address growth factor dosing in obese patients. One retrospective study of 86 patients reviewed outcomes after 2 different G-CSF mobilization regimens: either single daily dose (14 μg/kg/day) or split dose (2 × 7 μg/kg/day). Patients were stratified according to body mass index (BMI; ≤ 25 or > 25). In patients with BMI ≥ 25 kg/m², once-daily dosing resulted in a higher CD34+ cell yield [101]. Another retrospective study of 356 patients found that BMI ≥ 25 did not affect the CD34+ cell yields when mobilization was achieved by plerixafor plus G-CSF. Although not statistically significant, there was a trend that patients with higher BMI required more apheresis sessions and a higher total dose of plerixafor, but this could possibly be overcome if plerixafor dose and/or CD34+ dose were according to ideal and not actual body weight [102].

Waples et al. [103] performed a retrospective analysis comparing PBPC dosing by ideal versus actual body weight. In 63 patients who underwent progenitor cell mobilization with chemotherapy and G-CSF, 49% were greater than 25% over their ideal body weight. In this study, higher cell doses were associated with improved hematopoietic recovery, regardless of whether ideal or actual body weight calculation were used. Also, 16% of patients would have had 1 less apheresis procedure performed if ideal weight were used. More recently, Pulsipher et al. [29] also reported that similar outcomes in adult patients whether CD34+ cell dose was based on actual or ideal body weight. Although other unpublished NMDP data also suggest that dosing obese patients according to ideal body weight might be sufficient, additional studies are needed before this becomes a recommended standard practice [103]. Further evaluation of effects on G-CSF, CD34+ cell dosing, and body weight may be of increasing importance as a cost-saving measure.

Question 4: How do you manage thrombocytopenia?

Leukapheresis procedures usually result in a decrease in platelet count. Although some variability may exist in the extent of platelet loss depending on the type of apheresis machine, this occurs because of an inability to completely separate platelets from the target cell layer in the centrifuge. This, coupled along with the anticoagulants necessary for the extracorporeal circuit, may increase bleeding risk in patients who begin their collection with thrombocytopenia [90].

For allogeneic donors, safety is of primary concern. Among 2408 unrelated donors from the NMDP, after 2 days of collection nearly 40% had platelet counts below 100 × 10^9/L and 2% had platelet counts below 50 × 10^9/L (with a single donor having a platelet count below 20 × 10^9/L) [37]. The NMDP recommends that unrelated donors not undergo leukapheresis for more than 2 days. Furthermore, the safety of continuing leukapheresis must be carefully considered if the platelet count falls below < 100 × 10^9/L [104]. Similar standards should be considered for adult related donors.

Question 5: Is there is a threshold of leukocytosis for which growth factor should be held?

There are minimal data to guide the management of mobilization in patients who have leukocytosis. The risk of growth factor-induced splenic rupture is an important concern. In the report on 2408 donors from the NMDP, nearly a third developed WBC blood counts exceeding 50 × 10^9/L, but fewer than 1% had WBC counts exceeding 75 × 10^9/L. There was no splenic rupture or thrombosis [37].

However, several isolated case reports describe donors who had splenic rupture in whom WBC counts at the time of the event exceeded 50 × 10^9/L [105-107]. In a report on 91 donors that assessed splenic size by ultrasound and palpation during G-CSF mobilization, a significant increase in spleen size was observed, but there was no correlation with any hematologic parameters and no splenic complications [108]. More recently, Stiff et al. [109] reported on 306 donors undergoing G-CSF mobilization and splenic assessments performed by ultrasound and physical exam. The median spleen volume increased by 1.47-fold on the first day of leukapheresis but declined to near pretreatment size by 7 days after leukapheresis. In only 9% of patients did splenic volumes increase by more than 2-fold. There were no splenic ruptures. There was no correlation between change in spleen volume, G-CSF dose, peak absolute neutrophil count, CD34+ cell yield, or donor weight [109]. Despite the lack of association between hematologic parameters and splenic enlargement or risk of splenic rupture, the general practice is to withhold G-CSF when the WBC count exceeds 100 × 10^9/L.
and to withhold plerixafor when the WBC count exceeds 75 \times 10^9/L.

Question 6: Are G-CSF biosimilars recommended for use in PBPC mobilization?

Approved biosimilar G-CSFs are produced and manufactured by a similar process to the innovator (original) biologic and generally sold at lower prices. Data support their role in chemotherapy-induced neutropenia at cost efficiency [110,111]; however, less data are available regarding their use in PBSC mobilization [112-114]. Lefrere et al. [112] reported on their first experience in 40 patients undergoing mobilization with biosimilar G-CSF. Compared with a historical cohort group treated with G-CSF, there were no significant differences in median CD34⁺ cell collection. Schmitt et al. [113] recently reported comparable efficacy and safety in 22 healthy donors using a G-CSF biosimilar XM02 compared with G-CSF. In another retrospective, single-institution study of 96 patients comparing filgrastim, biosimilar filgrastim, and lenograstim, biosimilar filgrastim was found to be comparable with filgrastim for collection yields [114]. Larger controlled studies with longer term follow-up are necessary before recommending the use of these agents for mobilization.

CONCLUSIONS

Hematopoietic progenitor cell mobilization and collection is an evolving area with wide variation in clinical practice. Although each institution varies according to patient demographics, financial limitations, and resource availability, the American Society for Blood and Marrow Transplantation Practice Guidelines Subcommittee developed this “frequently asked question” style review with the goal to provide transplant practitioners with straightforward consensus and evidence-driven practice guidelines.

ACKNOWLEDGMENTS

Conflict of interest statement: H.K.D. has received research support from Sanofi and Celgene and is on the Speaker’s Bureau for Sanofi and Celgene. W.B. has received research support from Amgen and has consulted for Amgen. S.D. has received honoraria and research support from Amgen, Chugai, and Sanofi, whose products are discussed in this work. L.J.C. has received research support for Onyx, Celgene, BMS, and Novartis; has consulted for Onyx and Sanofi; and is on the Speaker’s Bureau for Sanofi. M.A.P. has consulted for Sanofi. P.S. is on Speaker’s Bureau and has served on Advisory Board for Sanofi and is on Speaker’s Bureau for Millenium.

Financial disclosure: The authors have nothing to disclose.

REFERENCES

Levels of Evidence

1++ High-quality meta-analyses, systematic reviews of RCTs or RCTs with a very low risk of bias

1+ Well-conducted meta-analyses, systematic reviews of RCTs, or RCTs with a low risk of bias

1- Meta-analyses, systematic reviews of RCTs, or RCTs with a high risk of bias

2++ High-quality systematic reviews of case-control or cohort studies; high-quality case-control or cohort studies with a very low risk of confounding, bias, or chance and a high probability that the relationship is causal

2+ Well-conducted case-control or cohort studies with a low risk of confounding, bias, or chance and a moderate probability that the relationship is causal

2- Case-control or cohort studies with a high risk of confounding, bias, or chance and a significant risk that the relationship is not causal

3 Nonanalytic studies, eg, case reports or case series

4 Expert opinion

Grades of Recommendation

A At least 1 meta-analysis, systematic review, or RCT rated as 1++ and directly applicable to the target population or a systematic review of RCTs or a body of evidence consisting principally of studies rated as 1+, directly applicable to the target population, and demonstrating overall consistency of results

B A body of evidence including studies rated as 2++, directly applicable to the target population, and demonstrating overall consistency of results or extrapolated evidence from studies rated as 1++ or 1+

C A body of evidence including studies rated as 2+, directly applicable to the target population, and demonstrating overall consistency of results or extrapolated evidence from studies rated as 2++

D Evidence level 3 or 4 or extrapolated evidence from studies rated as 2+

RCT indicates randomized clinical trial.